0959-8049(95)00066-6

Gene Expression and Neuroblastoma Cell Differentiation in Response to Retinoic Acid: Differential Effects of 9-cis and All-trans Retinoic Acid

C.P.F. Redfern, P.E. Lovat, A.J. Malcolm and A.D.J. Pearson

Retinoic acid has considerable potential for the chemoprevention and chemotherapy of cancer. Neuroblastoma cells differentiate in response to retinoic acid in vitro, an observation that has led to clinical trials using either the 13-cis or all-trans isomers of retinoic acid. We review the effects of retinoic acid on neuroblastoma, and the potential involvement of nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). 9-cis retinoic acid is a ligand for RXRs, and we review recent data on the differential effects of 9-cis and all-trans retinoic acid on neuroblastoma differentiation and proliferation in vitro, and possible mechanisms of action via hetero- and homodimers of RARs and RXRs. Although there is uncertainty whether or not 9-cis retinoic acid produces its biological effects primarily via RXR homodimers, in vitro data suggest that this isomer of retinoic acid or stable analogues may have considerable potential for the treatment of resistant, disseminated neuroblastoma.

Key words: retinoids, all-trans retinoic acid, 9-cis retinoic acid, RAR-β, CRABP II, gene expression, receptors, neuroblastoma

Eur J Cancer, Vol. 31A, No. 4, pp. 486-494, 1995

INTRODUCTION

VITAMIN A has long been recognised as important for development and growth. The discovery and cloning of nuclear retinoic acid receptors [1-3] has led to increased interest in the role of this small molecule, a derivative of vitamin A, in controlling cell differentiation. Neuroblastoma cells, like teratocarcinoma and promyelocytic cells, undergo marked morphological changes in vitro when treated with retinoic acid [4], and this observation has resulted in clinical trials to establish whether or not retinoic acid is effective as a form of treatment for neuroblastoma in vivo. Preliminary studies, in which either the 13-cis or all-trans isomers of retinoic acid have been used [5, 6], suggest that retinoic acid may be of value in some patients, and fully randomised trials are now in progress. Recent advances in our understanding of the mode of action of retinoic acid at a molecular level, particularly with respect to its role as a transcriptional regulator, suggest that new generations of synthetic retinoids designed to mimic an hitherto relatively obscure retinoic acid isomer, 9-cis retinoic acid (Figure 1), may have considerable clinical potential.

DIFFERENTIATION OF SH-SY-5Y CELLS IN RESPONSE TO 9-CIS AND ALL-TRANS RETINOIC ACID

Phenotypic relationships within and between human neuroblastoma cell lines are complex, indicating that, clinically,

Figure 1. All-trans, 13-cis and 9-cis retinoic acid.

neuroblastoma may not be a single disease. Neuroblast (N-type), substrate-adherent (S-type) and intermediate (I-type) cells have been recognised within well-established lines [7, 8]. I-type cells may be precursors to N- and S-type cells [7, 8], which may, nevertheless, retain the ability to transdifferentiate [9–11]. Retinoic acid induces the differentiation of N-, S- and I-type cells,

Correspondence to C.P.F. Redfern.

C.P.F. Redfern and P.E. Lovat are at the Medical Molecular Biology Group, Department of Medicine; P.E. Lovat and A.D.J. Pearson are at the Department of Child Health and A.J. Malcolm is at the Department of Pathology, Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, U.K.

but the resulting phenotype depends on the cell line and particular sub-clone: S-type cells may differentiate to Schwannian [9] or melanocytic types [10], or undergo apoptosis [12]. The SH-SY-5Y cell line is a neuroblast or N-type line derived from the SK-N-SH cells [13], and neuronal differentiation is induced by either retinoic acid [14] or dibutyryl cyclic AMP (dbcAMP) [15]; both these agents induce the extension of cell processes, here referred to as neurites, but biochemical phenotypes may differ [14]. Although most differentiation experiments with human neuroblastoma cells have been carried out with relatively high retinoic acid concentrations of 10^{-6} – 10^{-5} M, in our hands neurite extension in SH-SY-5Y cells after 2 days exposure to alltrans retinoic acid reaches a maximum at 10^{-8} M, and does not increase with higher doses of retinoic acid or longer incubation times of up to 4 days [16] (Figure 2). Conversely, dbcAMP is more effective at promoting morphological differentiation, and neurite length continues to increase with time during 4 days incubation [16] (Figure 2).

In contrast to all-trans and 13-cis, 9-cis retinoic acid has a greater effect on cell morphology, with neurite length continuing to increase with time over at least 4 days in vitro, comparable to treatment with dbcAMP alone (Figure 2). Dose-response studies with all three retinoic acid isomers have demonstrated that 9cis retinoic acid is less effective than the other isomers at low concentrations (10⁻⁸ M), but more effective at higher concentrations of 10⁻⁶ M [16] (Figure 3). At a concentration of 10⁻⁶ M, 13-cis retinoic acid produces a slightly greater response than an equivalent dose of all-trans [16]. Whether or not this is a result of isomerisation to all-trans requires further study to elucidate the extent of isomerisation under these culture conditions, the relative rates of metabolism of the different retinoic acid isomers, and, in consequence, the area under the concentration curve for all-trans retinoic acid after incubation with alltrans or 13-cis retinoic acid, respectively.

In addition to promoting morphological change, all-trans retinoic acid inhibits neuroblastoma cell proliferation, which may be due, at least in some cell lines, to reduced expression of cyclin-dependent protein kinases [17]. In SH-SY-5Y cells, reduced proliferation in response to all-trans retinoic acid is not a result of cytotoxicity [16], and is dose-dependent, giving a linear decrease in proliferation rate for all-trans retinoic acid concentrations ranging over at least 4 orders of magnitude

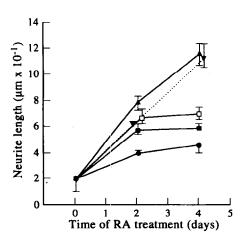


Figure 2. Morphological differentiation of SH-SY-5Y cells treated with retinoic acid (1 μM) isomers or dbcAMP [from 16]. Each point is the median ± 95% confidence interval (CI). ●, control; ■, all-trans; □, 13-cis; ▲, 9-cis; ▼, dbcAMP.

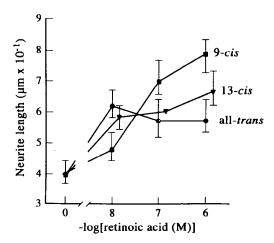


Figure 3. Dose-response studies of morphological differentiation induced by retinoic acid isomers in SH-SY-5Y cells after 2 days. Each point is the median ± 95% CI. For details see [16].

from 10^{-10} M [16] (Figure 4). 9-cis retinoic acid also inhibits proliferation to a similar extent to all-trans at 10^{-7} - 10^{-6} M, but is less effective at lower doses (Figure 4).

THE MECHANISM OF ACTION OF RETINOIC ACID

In embryonal carcinoma (EC) cells, retinoic acid-induced differentiation is accompanied by changes in gene expression within a few hours of exposure to retinoic acid [18]. This may be a direct result of the binding of all-trans retinoic acid to nuclear retinoic acid receptors (RARs). The three types of RAR (RAR- α , $-\beta$ and $-\gamma$) are ligand-dependent transcriptional regulators, closely related in structure to steroid and thyroid hormone receptors [2, 3, 19], and act by binding as receptor dimers to retinoic acid response elements (RAREs), specific DNA sequences linked in cis to retinoic acid-responsive genes. Although earlier studies of retinoic acid-induced transcription were indicative of transcriptional activation via RAR homodimers, it now appears that RARs have considerably greater activity as heterodimers with auxiliary proteins [20, 21]. These auxiliary proteins, called retinoid X receptors or RXRs, are also members of the steroid receptor superfamily and bind 9-cis

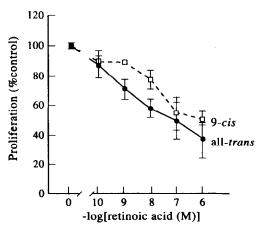
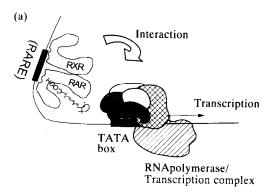
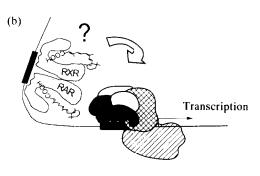


Figure 4. Logistic growth curve constants for SH-SY-5Y cells as a function of increasing all-trans or 9-cis retinoic acid concentration (from [16]). Data expressed as a percentage of the logistic growth rate constants for the control cells in each of three experiments. Error bars ± S.E.M.


retinoic acid with high affinity [22, 23]. Thus, RARs may work predominantly as heterodimers with RXRs [24], although the possibility that RAR homodimers also have a role in vivo cannot be excluded [25-27]. All-trans retinoic acid binds with high affinity (K_d 0.2-0.4 nM [28]) to RARs but not to RXRs. In contrast, 9-cis retinoic acid, a minor component in equilibrium mixtures of retinoic acid isomers [29, 30], binds with a comparable affinity to RXRs (K_d 1.4-2.4 nM) and also to RARs (K_d 0.2-0.8 nM) [28]. A property of RXRs, which is of particular importance, is that they act as auxiliary proteins or dimer partners for a number of other nuclear hormone receptors including thyroid hormone, vitamin D₃ and peroxisome proliferator receptors [24], and 9-cis retinoic acid is thus a potentially important ligand for co-regulating other hormone response pathways. Direct repeats (DR) of the sequence (A/G)GTTCA separated by 1 (DR + 1) to 5 (DR + 5) nucleotides form the basis of response elements for RAR-RXR heterodimers and for hetero- and homodimers for RXRs and other ligand-dependent transcriptional regulators [24].


The involvement of RXRs in retinoic acid-mediated transcriptional responses raises a number of questions with respect to the role of different retinoic acid isomers in neuroblastoma differentiation. For example, does 9-cis retinoic acid play a role in transcriptional activation resulting in neuroblastoma differentiation? Is RAR-RXR heterodimer activity independent of 9-cis retinoic acid, and can 9-cis act synergistically with all-trans retinoic acid (Figure 5)? Answers to these questions are important in order to make the most effective clinical use of retinoids in the treatment of neuroblastoma.

GENE EXPRESSION IN NEUROBLASTOMA CELLS IN RESPONSE TO 9-CIS AND ALL-TRANS RETINOIC ACID

The differentiation of human neuroblastoma cells by all-trans retinoic acid is accompanied by changes in gene expression. At the mRNA level, both induction and repression has been described, with the genes involved falling into two broad categories: those, such as $RAR-\beta$ [31, 32], $RAR-\alpha$ [33], interleukin-8 [34], IGF-II [35], thrombospondin [36], the RET protooncogene [37] and MYCN [38] which are induced or repressed within a few hours, and those which change in expression after 2 or more days, such as PGY1 [39], GAP43 [40], βA4-amyloid [41], POMC [42] and ID2 [43]. Furthermore, N- and S-type cells differ in their responses with, for example, mRNA for tissue transglutaminase showing rapid induction in S-type cells only [12], whereas the induction of the RET proto-oncogene is confined to N-type cells [37]. In SH-SY-5Y neuroblastoma cells, the expression of RAR-β is rapidly induced in response to alltrans retinoic acid [44] (Figure 6). Since the RAR- β gene has been relatively well characterised and its induction may be important for the retinoic acid-mediated expression of "late" genes, it may be a valuable marker for elucidating the mechanism of action of different retinoic acid isomers. For this reason, we have studied the induction of $RAR-\beta$ in SH-SY-5Y cells in detail and compared its induction characteristics in response to retinoic acid isomers with another gene, CRABP II.

RAR- β mRNAs are transcribed from either of two promoters [45, 46], and the internal human RAR- β 2 promoter contains a DR + 5 RARE (β RARE) [47]. RAR- β transcription is upregulated in response to retinoic acid in HepG2 cells [48], and this is also likely to be the mechanism of RAR- β mRNA induction in other cell types [49]. In SH-SY-5Y cells, RAR- β induction in response to all-trans retinoic acid is rapid (Figure 6), and

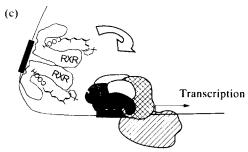
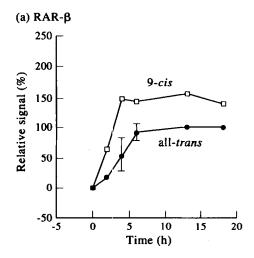



Figure 5. Potential modes of transcriptional regulation by retinoic acid receptors. In (a), the binding of all-trans retinoic acid to the RAR partner of the RXR-RAR heterodimer facilitates transcriptional activation via interactions with the transcription complex independently of RXR ligand. In (b), 9-cis retinoic acid may synergise with all-trans, giving an enhanced response to RXR-RAR heterodimers. In (c), 9-cis retinoic acid induces the formation of RXR homodimers [61] potentially allowing qualitatively and quantitatively different transcriptional activating properties to RXR-RAR heterodimers.

abolished by actinomycin D, but not inhibitors of protein synthesis [31, 44]. This evidence suggests that RAR- β transcription is induced by all-*trans* retinoic acid in SH-SY-5Y cells.

Messenger RNA levels for cellular retinoic acid binding protein II (CRABP II) also increase rapidly in SH-SY-5Y cells in response to all-trans retinoic acid [44] (Figure 6). CRABP II is transcriptionally regulated by retinoic acid in human fibroblasts [50] and murine embryonal carcinoma cells [51]. The murine CRABP II (mCRABP II) promoter has two RAREs [51], and at least one putative DR + 1-type RARE has been described within the human CRABP II promoter [50]. Since the induction of CRABP II by all-trans retinoic acid in SH-SY-5Y cells is rapid, abolished by actinomycin D and insensitive to inhibitors of protein synthesis [44], this is also likely to be directly mediated at a transcriptional level. Moreover, there are no apparent changes in CRABP II mRNA stability in response to retinoic acid [44]. Unlike RAR-β, where mRNA levels after induction

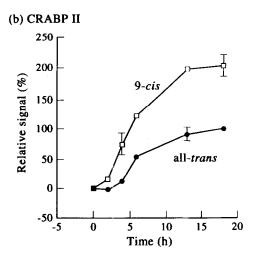
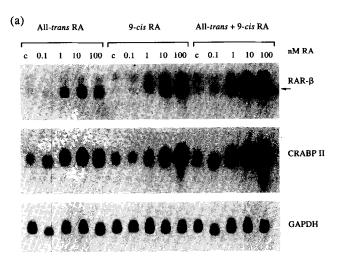
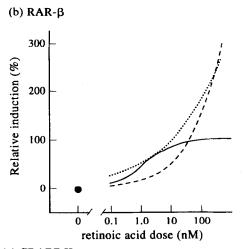
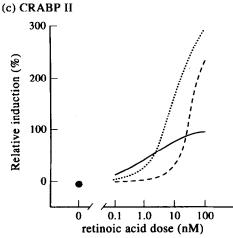
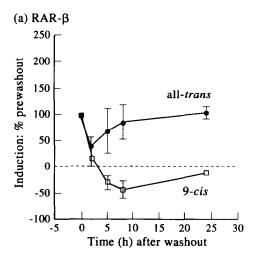




Figure 6. Time course of induction of RAR- β and CRABP II in SH-SY-SY cells after treatment with 10^{-7} M all-trans or 9-cis retinoic acid [44]. (a) Induction of RAR- β (expressed as a percentage of RAR- β signal obtained with 10^{-7} M all-trans retinoic acid after 18 h incubation); (b) induction of CRABP II (expressed as a percentage of CRABP II signal obtained with 10^{-7} M 9-cis retinoic acid after 18 h incubation, as above). Error bars: \pm S.E.M., n=3. Reprinted with permission of The Biochemical Society and Portland Press from Biochem J 1.994, 304, 147–154.

reach a plateau 4–6 h after initial exposure to all-trans retinoic acid, CRABP II mRNA levels continue to increase for at least 18 h. This difference in induction time-course between RAR- β and CRABP II is attributable, at least in part, to differences in mRNA stability: the RAR- β mRNA half-life (3.9 h) is one-fifth of that for CRABP II [44]. Note that by comparison with human fibroblasts [50], the induction of CRABP II in SH-SY-5Y cells has different characteristics, in that it is insensitive to cycloheximide and CRABP II mRNA levels continue to increase for several hours.

Although 9-cis retinoic acid gives induction time courses for RAR- β and CRABP II that are very similar to those in response to all-trans retinoic acid, 9-cis consistently produces a greater magnitude of induction for both genes. This is confirmed by dose-response experiments which, in addition, show that these two retinoic acid isomers produce markedly different dose-response curves [44] (Figure 7). As with morphological differentiation, 9-cis at low concentrations is less effective than all-trans, the response then increasing steeply so that at 10^{-7} M




Figure 7. Dose-dependent induction of RAR-β and CRABP II.

(a) Northern blot of RNA extracted from SH-SY-5Y cells after treatment with all-trans and/or 9-cis retinoic acid at the concentrations indicated for 6 h. c, control ethanol. (b) and (c) Logistic curves fitted to GAPD-corrected data from three experiments [44] for (b) the induction of RAR-β (lower transcript, expressed as a percentage of signal obtained with 10⁻⁷ M all-trans retinoic acid, such that control = 0, and 10⁻⁷ M all-trans retinoic acid signal = 100%); and (c) the induction of CRABP II (expressed as a percentage of response with 10⁻⁷ M all-trans retinoic acid; ——: all-trans retinoic acid; ——: 9-cis retinoic acid; ——: all-trans and 9-cis retinoic acid together. Figure 7a is reprinted with permission of the Biochemical Society and Portland Press from Biochem J 1994, 304, 147–154.

concentrations, 9-cis retinoic acid gives a 3-fold greater induction than all-trans. In contrast, all-trans retinoic acid is effective at 10^{-10} to 10^{-9} M concentrations with the response reaching a plateau at about 10^{-8} M. The effects of 9-cis and all-trans retinoic acid together are approximately additive (Figure 7) [44].

The markedly different dose-response curves for the induction of both RAR- β and CRABP II by all-trans or 9-cis retinoic acid suggest that a different molecular mechanism is involved. This conclusion is supported by the fact that the induction by all-trans is maintained even after the all-trans retinoic acid is removed by washout, whereas removal of 9-cis retinoic acid from the culture medium after induction results in a decrease in mRNA levels for both RAR- β and CRABP II, consistent with the removal of the transcriptional stimulus at the time of retinoic acid washout [44] (Figure 8).

In clinical trials with retinoic acid, the 13-cis isomer has seen greatest use. Previous work has shown that 13-cis retinoic acid is

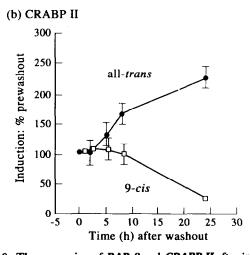


Figure 8. The expression of $RAR-\beta$ and $CRABP\ II$ after induction with all-trans or 9-cis retinoic acid and subsequent washout, taken from ref. [44]. (a) $RAR-\beta$: data expressed as a percentage of $RAR-\beta$ signal after treatment with all-trans (\blacksquare) or 9-cis (\square) retinoic acid for 6 h (washout time zero). i.e. at time zero, the signal for all-trans retinoic acid treated cells is 100% (control is 0%, dotted line). Similarly, for 9-cis retinoic acid treated cells, the time-zero signal (6 h) is taken as 100%. Note that the level of initial induction by 9-cis is higher than for all-trans retinoic acid. (b) $CRABP\ II$, details as for (a). Error bars: \pm S.E.M., n=3 or n=4. Reprinted with permission of the Biochemical Society and Portland Press from Biochem J 1994, 304, 147–154.

100-fold less potent than all-trans in inducing RAR-β expression, at least in murine melanoma cells [49], and this tallies with its lower binding affinity to RARs [52]. In SH-SY-5Y neuroblastoma cells, 13-cis retinoic acid is also less potent than either all-trans or 9-cis and appreciable induction of RAR-β and CRABP II is apparent only at high concentrations (Figure 9). If the clinical efficacy of 13-cis retinoic acid is RAR-mediated, then this is likely to result from isomerisation to all-trans. Alternatively, clinical responses could be due to 13-cis-specific effects, such as the suicide inhibition of thioredoxin reductase [53], or to non-specific effects such as the disruption of intracellular membranes for which all-trans and 13-cis retinoic acid are reported to have equal efficiency [54].

THE MECHANISM OF ACTION OF ALL-TRANS AND 9-CIS RETINOIC ACID IN THE INDUCTION OF RAR- β AND CRABPII IN NEUROBLASTOMA CELLS

The interpretation of dose-response curves for 9-cis and all-trans retinoic acid, and the differential responses to these retinoic acid isomers after induction and washout, is complicated by two factors: the mechanism by which retinoic acid isomers reach the nucleus, and the potential isomerisation of all-trans to 9-cis and vice versa. All-trans retinoic acid binds with high affinity (K_d c. 4 nM) to cytosolic retinoic acid binding proteins, CRABP I and CRABP II, thought to facilitate its metabolic degradation [55]. 9-cis retinoic acid does not show substantial binding to CRABP I or II [56, 57] and, therefore, could be metabolically more stable than all-trans. Thus, at low concentrations of 9-cis retinoic acid, poor availability to the nucleus may not be an adequate explanation for its lack of activity by comparison with all-trans.

The potential for isomerisation is a more serious problem. 9-cis retinoic acid is a minor component at isomerisation equilibrium [29, 30], and in SH-SY-5Y cells there can be significant conversion of 9-cis to all-trans, even after relatively short (6 h) incubation times [44]. At high concentrations of 9-cis retinoic acid, some of the responses observed could, therefore, be due to alltrans formed by isomerisation. Conversely, all-trans retinoic acid is more stable and the induction of $RAR-\beta$ and $CRABP\ II$ by all-trans retinoic acid may be due to all-trans alone, presumably activating RXR-RAR heterodimers in which the RXR partner acts as a ligand-independent auxiliary factor. Activation at nanomolar concentrations of all-trans retinoic acid is consistent with its affinity for RARs, with the final magnitude of response at 10^{-8} – 10^{-7} M limited by the intracellular concentrations of RXR-RAR heterodimers. This interpretation is based on the assumption that transcription driven by ligand-activated recep-

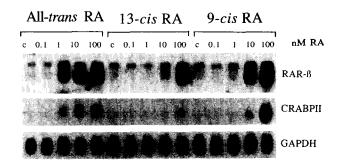


Figure 9. Northern blot showing induction of $RAR-\beta$ and CRABPII in SH-SY-5Y cells treated for 6 h with all-trans, 13-cis or 9-cis retinoic acid at the concentrations indicated (Redfern and associates, unpublished data).

tor dimers depends on the affinity of the receptor dimer for its response element (RE) and the affinity of the dimer/RE complex for the basal transcription machinery, TFIID, or associated proteins. Thus, assuming that the availability of transcription factors and RNA polymerase is not limiting, increasing concentrations of ligand-activated receptor dimers will increase the rate of transcription, up to a limit imposed by receptor concentration and physical limits to the rate of transcriptional initiation and elongation.

At low concentrations (10⁻⁹ M), 9-cis retinoic acid is less effective than all-trans at inducing RAR-β and CRABP II [44]. Although 9-cis retinoic acid binds to RARs with high affinity [28], this is to a different site within the ligand binding domain to all-trans [58]. Nevertheless, 9-cis retinoic acid apparently induces similar conformational changes of RARs to all-trans [59]. It has been reported that 9-cis retinoic acid does not activate RARs [26], but in view of contrary evidence [60], whether or not 9-cis activates RARs or the RAR partner of RXR-RAR heterodimers is an issue still to be resolved, but this could be a function of interactions with tissue-specific components of the transcription complex rather than the RARs themselves.

Conversely, at high (10⁻⁷ M) concentrations, 9-cis is 3-fold more effective at inducing both RAR-β and CRABP II than all-trans retinoic acid [44]. Since 9-cis retinoic acid is reported to induce RXR homodimer formation cooperatively, at least in vitro [61], it is possible that RXR homodimers mediate the response of SH-SY-5Y cells to 9-cis retinoic acid. The greater response obtained with high concentrations of 9-cis compared with all-trans retinoic acid would result either from a greater abundance of RXR protein relative to RARs, or from a higher affinity of either RXR homodimers for the RARE, or of the RXR-RXR/RARE complex for the transcription machinery.

The isomerisation of 9-cis to all-trans suggests that the greater response to high concentrations of 9-cis retinoic acid could be due to synergism between the 9-cis and all-trans isomers, both binding to RXR-RAR heterodimers. However, since the response to both isomers is approximately additive, and explainable at low concentrations by the all-trans isomer alone, such a mechanism may be unlikely. Furthermore, the fact that induction by 9-cis retinoic acid is rapidly attenuated by subsequent washout suggests that all-trans is not involved in the response, and argues for a distinct mechanism of action of 9-cis, perhaps mediated by ligand-dependent RXR homodimers. If this interpretation is correct, data from washout experiments imply that RXR homodimers may be strongly ligand-dependent with a high rate of ligand dissociation. An important caveat is that the maintenance of transcriptional induction after washout of alltrans is assumed to result from a low rate of dissociation of the ligand from its receptor and not due to the intracellular release of all-trans retinoic acid sequestered by CRABP, a protein which does not bind 9-cis [56, 57].

An alternative explanation for the rapid reduction in RAR-β and CRABP II expression after 9-cis washout is the possibility that cellular responses to 9-cis and all-trans retinoic acid are qualitatively different, and that the expression of RAR-β and CRABP II induced by all-trans is maintained in its absence by the all-trans-dependent synthesis of retinoic acid-independent transcription factors. Furthermore, while we favour the hypothesis that responses to high concentrations of 9-cis retinoic acid are mediated by RXR homodimers, we cannot rule out the possibility that induction by 9-cis is mediated by its binding to the RAR partner of RXR-RAR heterodimers, particularly since Allenby and associates [62] have found that 9-cis has a 6-fold

higher rate of dissociation from RAR- γ than does all-trans retinoic acid. The roles of different RAR types in the retinoic acid-mediated induction of $RAR-\beta$ and CRABP II have not yet been elucidated.

The idea that in SH-SY-5Y cells the induction of $RAR-\beta$ and CRABP II by 9-cis retinoic acid is mediated by RXR homodimers raises two major issues: (1) how can the possibility of synergism between all-trans and 9-cis retinoic acid on RXR-RAR heterodimers be evaluated; and (2) do the properties of the RAR-β and CRABP II RAREs support the RXR homodimer interpretation? Synergism between ligands in this context means that the magnitude of transcriptional response to all-trans retinoic acid-bound RAR heterodimers is increased by the binding of 9-cis to the RXR partner. This implies an increase in affinity for the response element and/or in the affinity of the heterodimer/RARE complex for TFIID or other transcription factors. Evidence for synergism between all-trans and 9-cis retinoic acid with respect to RXR-RAR-mediated activation of the BRARE is based largely on transient transfection experiments in other cell types [25], but these often suffer from methodological problems, particularly with respect to isomerisation during extended incubations of up to 40 h with all-trans or 9-cis retinoic acid, and it is difficult to rule out the possibility that, in some cases, additive effects of all-trans retinoic acidactivated RXR-RAR heterodimers and 9-cis-activated RXR homodimers may be mistaken for synergistic activation of RXR-RAR heterodimers by all-trans and 9-cis retinoic acid.

Evidence for synergy has also been reported for heterodimers of RXRs with vitamin D₃ receptors (VDR) [63], although others have reported that 9-cis retinoic acid does not influence the transcriptional activity of RXR-VDR and RXR-thyroid hormone receptor heterodimers [64, 65], and solution dimerisation experiments suggest that 9-cis retinoic acid destabilises VDR-RXR heterodimers by promoting RXR homodimer formation [66]. The question of whether 9-cis retinoic acid is an activating ligand for the RXR partner of RXR-hormone receptor heterodimers cannot at present be satisfactorily resolved, but it is important to point out that the potential for synergy may not be a function of RXRs but of components of the transcription machinery which interact with the heterodimer or RXR partner. Potential synergy may, therefore, show tissue specificity and dependence on the promoter context of a particular response element.

With respect to RAREs, the β RARE is well characterised and in the presence of 9-cis retinoic acid, RXR homodimers will drive transcription from this response element [26, 61]. The same is also true for the DR + 1 type element characteristic of the apoA1 promoter, although the putative DR + 1 RARE associated with the human CRABP II gene has not been studied. Thus, the receptor specificities of RAREs in vitro support the view that 9-cis-activated RXR homodimers mediate gene induction in SH-SY-5Y cells.

GENE EXPRESSION IN RELATION TO NEUROBLASTOMA DIFFERENTIATION AND PROLIFERATION

These studies on SH-SY-5Y cells demonstrate that $RAR-\beta$ and CRABP II are rapidly induced by all-trans and 9-cis retinoic acid, but these isomers apparently act by different mechanisms with 9-cis giving a greater response at high concentrations. Furthermore, the relative differentiation-inducing properties of 9-cis and all-trans retinoic acid are similar to their relative effects on gene induction, but with respect to proliferation, these

isomers have about the same level of activity at high doses. This raises the question of whether or not retinoic acid-induced differentiation and inhibition of proliferation are controlled by different mechanisms. In addition to their role as transcriptional activators, RARs and RXRs can be effective transcriptional inhibitors by binding as ligand-dependent monomers to the c-fos and c-jun components of the AP1 complex [67], a transcriptional activator involved in controlling cell proliferation [68]. Ligand-dependent but RARE-independent protein-protein interactions between RARs, RXRs and AP1 components could thus account for the similar effects of all-trans and 9-cis retinoic acid on neuroblastoma cell proliferation.

Although the induction of $RAR-\beta$ and CRABP II are early events in retinoic acid-induced SH-SY-5Y cell differentiation, the relevance of these two genes to the differentiation process is unknown. In view of its role in retinoic acid metabolism [55], the induction of CRABP II could be a purely homeostatic response by cells programmed to maintain low intracellular levels of retinoic acid. Alternatively, RAR-B, as a liganddependent transcriptional regulator, could function to regulate subsequent, hypothetical events leading to full morphological and biochemical differentiation. However, although there may well be a link between $RAR-\beta$ expression and differentiation for some cell types, the role of $RAR-\beta$ in neuroblastoma differentiation is unknown. Retinoic acid-induced differentiation has been more extensively studied in EC cells, and these also show induction of RAR- β . RAR- α is, at least in some cell lines, critically involved in the induction of $RAR-\beta$ and differentiation [69], and RAR-B induction is thought to be a necessary step in HOX gene activation during EC cell differentiation [70]. Further work is clearly needed to elucidate the role of RAR-\beta in retinoic acid-induced neuroblastoma differentiation and phenotype.

FUTURE PROSPECTS

9-cis retinoic acid may have considerable potential for the treatment of resistant, disseminated neuroblastoma. Recent studies on animal models indicate that 9-cis retinoic acid may be more potent that all-trans in the suppression of breast cancer [71]. In addition, 9-cis retinoic acid is reported to have marked synergistic effects with all-trans in promoting the differentiation of retinoic acid-resistant promyelocytic leukaemia cells in vitro [72]. Before the potential of 9-cis retinoic acid for treating neuroblastoma patients can be fully realised, a greater understanding of the role of different retinoic acid isomers in the control of cell development and differentiation is required. The markedly distinct dose-response properties of 9-cis retinoic acid in inducing gene expression and differentiation of neuroblastoma cells raises important issues concerning the mode of action of 9cis, the involvement of RXRs and the effects of 9-cis retinoic acid on other hormonally mediated cellular control pathways. A definitive answer to the question of whether RXR homodimers or RAR-RXR heterodimers mediate the effects of 9-cis retinoic acid is important for the design of synthetic retinoids active in neuroblastoma, since ligand-dependent RXR-homodimerisation may depend on ligand-receptor interactions not involved in RXR-RAR heterodimerisation [73]. Furthermore, although 9-cis retinoic acid is not cytotoxic in vitro and no more effective than all-trans in inhibiting SH-SY-5Y cell proliferation [16], it will need to be established whether 9-cis retinoic acid can be tolerated in vivo at high doses. The potential for 9-cis to impinge upon vitamin D₃ and thyroid hormone-response pathways may produce unwanted or intolerable side effects when used in young

patients. Nevertheless, 9-cis retinoic acid and its mechanisms of action suggest new ways to approach the differentiation therapy of neuroblastoma.

- Daly AK, Redfern CPF. Characterization of a retinoic acid binding component from F9 embryonal carcinoma cell nuclei. Eur J Biochem 1987, 168, 133–139.
- Petkovich M, Brand M, Krust A, et al. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature (Lond) 1987, 330, 444-450.
- Giguere V, Ong ES, Segui P, et al. Identification of a receptor for the morphogen retinoic acid. Nature (Lond) 1987, 330, 624-629.
- Sidell N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 1982, 68, 589-593.
- Finklestein JZ, Krailo MD, Lenarsky C, et al. 13-cis retinoic acid (NSC122758) in the treatment of children with metastatic neuroblastoma unresponsive to conventional chemotherapy: report from the Children's Cancer Study Group. Med Ped Oncol 1992, 20, 307-311.
- Smith MA, Adamson PC, Balis FM, et al. Phase I and pharmacokinetic evaluation of all-trans retinoic acid in pediatric patients with cancer. J Clin Oncol 1992, 10, 1666-1673.
- Biedler JL, Casals D, Chang T-D, Meyers MB, Spengler BA, Ross RA. Multidrug resistant human neuroblastoma cells are more differentiated than controls and retinoic acid further induces lineage-specific differentiation. Advances in Neuroblastoma Research 3. New York, Wiley-Liss, 1991, 181-191.
- Ross RA, Bossart E, Spengler BA, Biedler JA. Multipotent capacity
 of morphologically intermediate (I-type) human neuroblastoma cells
 after treatment with differentiation-inducing drugs. Advances in
 Neuroblastoma Research 3. New York, Wiley-Liss, 193-201.
- Tsokos M, Scarpa S, Ross RA, Triche TJ. Differentiation of human neuroblastoma recapitulates neural crest development. Study of morphology, neurotransmitter enzymes, and extracellular matrix proteins. Am J Pathol 1987, 126, 484-496.
- Slack R, Lach B, Gregor A, Al-Mazidi H, Proulx P. Retinoic acidand staurosporine-induced bidirectional differentiation of human neuroblastoma cell lines. Exp Cell Res 1992, 202, 17-27.
- Matsushima H, Bogenmann E. Bi-modal differentiation pattern in a new human neuroblastoma cell line in vitro. Int J Cancer 1992, 51, 250-258.
- Piacentini M, Annichiarico-Petruzzelli M, Oliviero S, et al. Phenotype-specific tissue transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: correlation with cell death by apoptosis. Int J Cancer 1992, 52, 271-278.
- Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 1973, 33, 2643-2652.
- Pahlman S, Ruusala AI, Abrahamsson L, Mattsson ME, Esscher T. Retinoic acid induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol-ester-induced differentiation. Cell Different 1984, 14, 135-144.
- Perez-Polo JR, Werrbach-Perez K, Tiffany-Castiglioni E. A human clonal cell line model of differentiating neurons. *Dev Biol* 1979, 71, 341–355.
- Lovat PE, Lowis SP, Pearson ADJ, Malcolm AJ, Redfern CPF. Concentration-dependent effects of 9-cis retinoic acid on neuroblastoma cell differentiation and proliferation in vitro. Neurosci Lett 1994, 182, 29-32.
- Gaetano C, Matsumoto K, Thiele CJ. Retinoic acid negatively regulates p34^{cdc2} expression during human neuroblastoma differentiation. Cell Growth Different 1991, 2, 487-493.
- LaRosa GJ, Gudas LJ. An early effect of retinoic acid: cloning of an mRNA (Era-1) exhibiting rapid and protein synthesis-independent induction during teratocarcinoma stem cell differentiation. *Proc* Natl Acad Sci USA 1988, 85, 329-333.
- Leroy P, Krust A, Kastner P, Mendelsohn C, Zelent A, Chambon P. Retinoic acid receptors. In Morriss-Kay G, ed. Retinoids in Normal Development and Teratogenesis. Oxford, Oxford University Press, 1992, 7-25.
- Glass CK, Devary OV, Rosenfeld MG. Multiple cell-type-specific proteins differentially regulate target sequence recognition by the α-retinoic acid receptor. Cell 1990, 63, 729-738.
- 21. Zhang X-K, Hoffmann B, Tran PBV, Graupner G, Pfahl M.

- Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. *Nature* 1992, 355, 441-445.
- Heyman RA, Mangelsdorf DJ, Dyck JA, et al. 9-cis retinoic acid is a high-affinity ligand for the retinoid X receptor. Cell 1992, 68, 397-406.
- Levin AA, Sturzenbecker LJ, Kazmer S, et al. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature (Lond) 1992, 355, 359-361.
- 24. Stunnenberg HG. Mechanisms of transactivation by retinoic acid receptors. *BioEssays* 1993, 15, 309-315.
- Schrader M, Wyss A, Sturzenbecker LJ, Gripo JF, LeMotte P, Carlberg C. RXR-dependent and RXR-independent transactivation by retinoic acid receptors. *Nucl Acids Res* 1993, 21, 1231-1237.
- Carlberg C, Saurat J-H, Siegenthaler G. 9-cis retinoic acid is a natural antagonist for the retinoic acid receptor response pathway. Biochem J 1993, 295, 343-346.
- Heery DM, Pierrat B, Gronemeyer H, et al. Homo and heterodimers of the retinoid X receptor (RXR) activates transcription in yeast. Nucl Acids Res 1994, 22, 726-731.
- Allegretto EA, McClurg MR, Lazarchik SB, et al. Transactivation properties of retinoic acid and retinoid x receptors in mammalian cells and yeast—correlation with hormone binding and effects of metabolism. J biol Chem 1993, 268, 26625-26633.
- Curley RW Jr, Fowble JW. Photoisomerization of retinoic acid and its photoprotection in physiologic-like solutions. *Photochem Photobiol* 1988, 47, 831-835.
- Urbach J, Rando RR. Isomerization of all-trans retinoic acid to 9-cis retinoic acid. Biochem J 1994, 299, 459-465.
- Clagett-Dame M, Verhalen TJ, Biedler JL, Repa JJ. Identification and characterization of all-trans retinoic acid receptor transcripts and receptor protein in human neuroblastoma cells. Arch Biochem Biophys 1993, 300, 684-693.
- 32. Lovat PE, Pearson ADJ, Malcolm A, Redfern CPF. Retinoic acid receptor expression during the *in vitro* differentiation of human neuroblastoma, *Neurosci Lett* 1993, 162, 109-113.
- Marshall GM, Cheung B, Stacey KP, Norris MD, Haber M. Regulation of retinoic acid receptor-alpha in human neuroblastoma cell lines and tumor-tissue. Anticancer Res 1994, 14, 437-441.
- Yang KD, Cheng SN, Wu NC, Shaio MF. Induction of interleukin-8 expression in neuroblastoma cells by retinoic acid-implication of leukocyte chemotaxis and activation. *Pediat Res* 1993, 34, 720–724.
- Ueno T, Suita S, Zaizen Y. Retinoic acid induces insulin-like growth-factor-II expression in a neuroblastoma cell line. Cancer Lett 1993, 71, 177-182.
- Castle VP, OU XL, Oshea S, Dixit VM. Induction of thrombospondin-1 by retinoic acid is important during differentiation of neuroblastoma cells. J Clin Invest 1992, 90, 1857–1863.
- Tahira T, Ishizaka Y, Itoh F, Nakayusa M, Sugimura T, Nagao M. Expression of the ret proto-oncogene in human neuroblastoma cell lines and its increase during neuronal differentiation induced by retinoic acid. Oncogene 1991, 6, 2333-2338.
- Thiele CJ, Reynolds CP, Israel MA. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 1985, 313, 404

 406.
- Bordow SB, Haber M, Madafiglio J, Cheung B, Marshall GM, Norris MD. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma. Cancer Res 1994, 54, 5036-5040.
- Gaetano C, Matsumoto K, Thiele CJ. In vitro activation of distinct molecular and cellular phenotypes after induction of differentiation in a human neuroblastoma cell line. Cancer Res 1992, 52, 4402–4407.
- Konig G, Masters CL, Beyreuther K. Retinoic acid induced differentiated neuroblastoma cells show increased expression of the beta-A4 amyloid gene of Alzheimers disease and an altered splicing pattern. FEBS Lett 1990, 269, 305-310.
- DeLaurenzi V, Melino G, Knight RA, Pierotti AR, Cohen P. Modulation of POMC expression in human neuroectodermal cells. Biochem biophys Res Comm 1993, 197, 1402-1409.
- Biggs J, Murphy EV, Israel M. A human id-like helix-loop-helix protein expressed during early development. Proc Natl Acad Sci USA 1992, 89, 1512-1516.
- 44. Redfern CPF, Lovat PE, Malcolm AJ, Pearson ADJ. Differential effects of 9-cis and all-trans retinoic acid on the induction of retinoic acid receptor-β and cellular retinoic acid binding protein II in human neuroblastoma cells. Biochem J 1994, 304, 147-154.
- 45. Zelent A, Mendelsohn C, Kastner P, et al. Differentially expressed

- isoforms of mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing. *EMBO J* 1991, 10, 71–81.
- Nagpal S, Zelent A, Chambon P. RAR-beta-4, a retinoic acid receptor isoform is generated from RAR-beta-2 by alternative splicing and usage of a CUG initiator codon. *Proc Natl Acad Sci* USA 1992, 89, 2718-2722.
- De The H, Vivanco-Ruiz M, Tiollais P, Stunnenberg H, Dejean A. Identification of a retinoic acid response element in the retinoic acid receptor-β gene. Nature 1990, 343, 177–180.
- De The H, Marchio A, Tiollais P, Dejean A. Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EMBO J 1989, 8, 429–433.
- Redfern CPF, Daly AK, Latham JAE, Todd C. The biological activity of retinoids in melanoma cells. Induction of expression of retinoic acid receptor-β by retinoic acid in S91 melanoma cells. FEBS Lett 1990, 272, 19-22.
- Åström A, Pettersson U, Voorhees JJ. Structure of the human cellular retinoic acid binding protein II gene. Early transcriptional regulation by retinoic acid. J biol Chem 1992, 267, 25251-25255.
- Durand B, Saunders M, Leroy P, et al. All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 1992, 71, 73-85.
- Apfel C, Crettaz M, LeMotte P. Differential binding and activation of synthetic retinoids to retinoic acid receptors. In Morriss-Kay G, ed. Retinoids in Normal Development and Teratogenesis. Oxford, Oxford University Press, 1992, 65-74.
- Schallreuter KU, Woods JM. The stereospecific suicide inhibition of human melanoma thioredoxin reductase by 13-cis-retinoic acid. Biochem biophys Res Commun 1989, 160, 573-579.
- Wu Y, Gadina M, Tao-Cheng J-H, et al. Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. J Cell Biol 1994, 125, 743-753.
- Napoli JL. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis. 3 Nutr 1993, 123, 362-366.
- 56. Fogh K, Voorhees JJ, Åström A. Expression, purification, and binding properties of human cellular retinoic acid binding protein type I and type II. Arch Biochem Biophys 1993, 300, 751-755.
- 57. Redfern CPF, Wilson KE. Ligand binding properties of human cellular retinoic acid binding protein II expressed in E. coli as a glutathione-S-transferase fusion protein. FEBS Lett 1993, 321, 163–168.
- 58. Tate BF, Allenby G, Janocha R, et al. Distinct binding determinants for 9-cis retinoic acid are located within AF-2 of retinoic acid receptor α. Mol Cell Biol 1994, 14, 2323-2330.
- Keidel S, LeMotte P, Apfel C. Different agonist- and antagonistinduced conformational changes in retinoic acid receptors analysed by protease mapping. Mol Cell Biol 1994, 14, 287–298.
- Allenby G, Bocquel M-T, Saunders M, et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci USA 1993, 90, 30-34.
- Zhang X-K, Lehmann J, Hoffmann B, et al. (1992) Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature (Lond) 358, 587-591.
- Allenby G, Janocha R, Kazmer S, Speck J, Grippo J, Levin AA. Binding of 9-cis retinoic acid and all-trans retinoic acid to retinoic acid receptors α, β and γ. J biol Chem 1994, 269, 16689–16695.
- Schrader M, Muller KM, Becker-Andre M, Carlberg C. Response element selectivity for heterodimerization of vitamin D receptors with retinoic acid and retinoid X receptors. J Mol Endocrinol 1994, 12, 327-339.
- 64. Ferrara J, McCuaig K, Hendy GN, et al. Highly potent transcriptional activation by 16-ene derivatives of 1,25 dihydroxyvitamin D₃. Lack of modulation by 9-cis retinoic acid and of response to 1,25 dihydroxyvitamin D₃ or its derivatives. J biol Chem 1994, 269, 2971-2981.
- Lee IJ, Driggers PH, Medin JA, Nikodem VM, Ozato K. Recombinant thyroid hormone receptor and retinoid X receptor stimulate ligand-dependent transcription in vitro. Proc Natl Acad Sci USA 1994, 91, 1647-1651.
- Cheskis B, Freedman LP. Ligand modulates the conversion of DNA-bound vitamin D₃ receptor (VDR) homodimers into VDRretinoid X receptor heterodimers. *Mol Cell Biol* 1994, 14, 3329–3338.
- Salbert G, Fanjul A, Piedrafita FJ, et al. Retinoic acid receptors and retinoid X receptor-α downregulate the transforming growth factor-

- β_1 promoter by antagonizing AP-1 activity. *Mol Endocrinol* 1993, 7, 1347–1356.
- Angel P, Karin M. The role of jun, fos and the AP1 complex in cell proliferation and transformation. Biochim biophys Acta 1991, 1072, 129-157.
- 69. Kruyt FAE, Vanderveer LJ, Mader S, et al. Retinoic acid resistance of the variant embryonal carcinoma cell line RAC65 is caused by expression of a truncated RAR-α. Differentiation 1992, 49, 27-37.
- Moroni CM, Vigano MA, Mavilio F. Regulation of the human HOXD4 gene by retinoids. Mech Develop 1993, 44, 139-154.
- 71. Anzano MA, Byers SW, Smith JM, et al. Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res 1994, 54, 4614-4617.
- Kizaki M, Nakajima H, Mori S, et al. Novel retinoic acid, 9-cis retinoic acid, in combination with all-trans retinoic acid is an effective inducer of differentiation of retinoic acid resistant HL-60 cells. Blood 1994, 83, 3289-3297.
- Zhang X-K, Salbert G, Lee M-I, et al. Mutations that alter ligandinduced switches and dimerization activities in the retinoid X receptor. Mol Cell Biol 1994, 14, 4311

 –4323.

Acknowledgements—The authors thank the North of England Cancer Research Campaign and the North of England Children's Cancer Research Fund for supporting their research.

European Journal of Cancer Vol. 31A, No. 4, pp. 494-499, 1995 Copyright © 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0959-8049/95 \$9.50+0.00

0959-8049(95)00056-9

Cytotoxicity of Paclitaxel and Docetaxel in Human Neuroblastoma Cell Lines

A. Riccardi, T. Servidei, A. Tornesello, P. Puggioni, S. Mastrangelo, C. Rumi and R. Riccardi

Taxanes are an important new class of anticancer agents that inhibit cell division by the unique mechanism of increasing the rate of microtubule assembly and preventing microtubule depolymerisation. Using the colony inhibition assay, we compared the cytotoxicity of paclitaxel and docetaxel in three human neuroblastoma (NB) cell lines, SH-SY5Y, BE(2)M17 and CHP100. Different exposure times (3, 6, 12, 24, 48 and 72 h) and different concentrations ranging from 0.1 nM to 10 μM were tested. Both paclitaxel and docetaxel show antineoplastic activity in human NB cell lines. Taxanes' antitumour activity varied among the different cell lines, CHP100 being the most sensitive and SH-SY5Y the least sensitive. Paclitaxel cytotoxicity appears schedule-dependent, with marked cell kill observed only for exposures of 24 h or longer. Docetaxel cytotoxicity was dependent upon prolonged exposure only in the SH-SY5Y cell line, while an exposure time of 3-6 h resulted in exponential cell kill in the other two cell lines. Docetaxel was more cytotoxic than paclitaxel with a mean ratio of (paclitaxel/docetaxel) IC₅₀ values ranging from 2 to 11. For both taxanes, we observed good correlation between cytotoxic effect and percentage of cells blocked in G2/M phase. A cytotoxic effect occurred at concentrations comparable with those achieved in the plasma of patients treated with these agents in initial clinical trials. The full potential of prolonged infusion or repeated daily administrations of taxanes should be explored in clinical studies, and responses to taxanes in neuroblastoma should be assessed in paediatric phase II studies.

Key words: paclitaxel, docetaxel, neuroblastoma, cell lines, cytotoxicity Eur J Cancer, Vol. 31A, No. 4, pp. 494–499, 1995

INTRODUCTION

NEUROBLASTOMA (NB) is one of the most common childhood tumours, with the third highest incidence after leukaemia and brain tumours. The prognosis for patients with disseminated disease remains poor. The survival rate for patients of age > 1 year with stage IV disease is generally < 10%, and this has not

been modified even with aggressive therapeutic protocols. There is a pressing need to develop new and more effective antineoplastic agents for this disease. Over the past few years, an important new class of microtubule-stabilising agents has been shown to exhibit promising antineoplastic activity. Paclitaxel and docetaxel are the first taxanes that have reached early clinical testing. Paclitaxel was extracted from the bark of the Pacific yew Taxus brevifolia about 20 years ago, but its poor availability (only 50–150 mg/kg of dried trunk bark can be isolated) has limited an extensive clinical evaluation. Recently, this problem has been, in part, circumvented by the synthesis of docetaxel, a semisynthetic compound derived from the needles of Taxus baccata, by esterification of a non-cytotoxic precursor, the 10-

Correspondence to R. Riccardi, Division of Pediatric Oncology, Catholic University, L. go A. Gemelli, 8-00168 Rome, Italy.

A. Riccardi, T. Servidei, A. Tornesello, S. Mastrangelo and R. Riccardi are at the Division of Pediatric Oncology; and P. Puggioni and C. Rumi are at the Department of Medical Semiotic, Catholic University of Rome, Italy.